Effects of Deep Brain Stimulation on Neurotransmitter Systems in Rodent Models of Epilepsy **A Systematic Review** Rafi Matin^{1,2,} Kristina K. Zhang^{1,2,} Flavia Venetucci Gouveia^{1,} George M. Ibrahim^{1,2,3} ¹Neuroscience and Mental Health, The Hospital for Sick Children. ²Institute of Medical Science, University of Toronto, ³Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada

Unspecified

Introduction

- One-third of patients with epilepsy continue to experience debilitating seizures despite receiving the best available medical treatments¹.
- Deep brain stimulation (DBS) is a neuromodulation technique that involves surgically implanting electrodes to electrically stimulate specific brain regions and is a promising treatment for patients with refractory epilepsy².
- However, the specific mechanisms by which DBS reduces seizures are not well understood, hindering the development of more personalized treatments for optimal seizure reduction ³.
- The effects of DBS on neurotransmitter systems have been characterized in other disorders, but this has been less thoroughly investigated in the context of epilepsy ⁴.
- Here, we present findings from a systematic review on studies in rodent models of epilepsy that have explored the effects of DBS on neurotransmitters.

Figure 1. DBS in clinical and preclinical settings. DBS electrodes are surgically implanted in precise brain regions, delivering controlled electrical currents generated by a stimulator.

Objectives

- 1. Review the preclinical literature investigating DBS effects on neurotransmitters in rodent models of epilepsy.
- 2. Summarize the targeted brain regions, neurotransmitters studied, and employed methods.
- 3. Highlight the major effects of DBS on neurotransmitter systems associated with therapeutic effects.

Brain regions targeted

A variety of brain regions were targeted with DBS across the included articles. The most frequently targeted brain regions includes the anterior thalamic nuclei (ANT) (n=6, 22.2%), hippocampus (n=5, 18.5%), amygdala (n=5, 18.5%), and perforant path (n=5, 18.5%) (Fig 3).

Substantia nigra Superior colliculus

Figure 3. Brain regions targeted by DBS. A) Scheme of a sagittal view on a rodent brain illustrating the brain regions targeted by DBS. B) Overview of the targeted brain regions across included articles.

Neurotransmitters studied & methods employed

The effects of DBS were most frequently studied in relation to GABA (47.2% of studies), serotonin (5-HT) (13.9%), and adenosine (11.1%) (Fig 4A). Various methods were used to asses neurotransmitter effects at different durations of DBS (Fig 4B).

Α.	Gaba	Serotoni
	n =17	
B.		
Microdialysis (n=6)	Extracellular	neurotransmitter l
Pharmacological interaction (n=17)	Interactions	with agents that e
Protein & Gene expression (n=11)		
Autoradiography (n=1)		
Cell counts (n=2)		
	Hours	

Figure 4. Overview of neurotransmitters studied and methods employed. (A) Breakdown of neurotransmitters studied across included articles. "Other" neurotransmitters included opioids, endocannabinoids, galanin, and histamine. (B) Overview of methods used to assess neurotransmitter effects, including the duration of DBS studied for each method, and the primary outcomes obtained. Abbreviations: NT, neurotransmitter.

Results

Parafascicular thalamic nucleus

DBS Target	Neurotransmitter	Primary Findings	
Anterior nucleus of the thalamus	Adenosine	↑ Adenosine levels in the hippocampus ↓ Adenosine-kinase levels in the hippocampus	
	GABA	↑ GABA levels in the hippocampus ↑ Hippocampal GABAergic interneurons	
	Glutamate	\downarrow Glutamate levels in the hippocampus	
	Serotonin	↑ local 5HT metabolite levels Antiseizure effects were blocked with 5-HT1A receptor anta	
Basolateral amygdala	GABA	Antiseizure effects were augmented with GABAergic ASMs	
	Serotonin	Antiseizure effects were blocked with 5-HT1A receptor anta	
Basal ganglia	GABA	↑ GABA levels in the SNr (STN-DBS) Antiseizure effects were blocked with GABAa receptor anta (SNr-DBS)	
	Glutamate	↑ glutamate levels in the SNr & GP (STN-DBS)	
Cerebellum	GABA	Antiseizure effects were augmented with GABAergic ASMs	
Hippocampal formation	GABA	↑ local GABA levels & GABAa receptor expression Antiseizure effects were augmented with GABAergic ASMs	
Locus Coeruleus	Norepinephrine	Antiseizure effects were blocked with β-adrenoceptor antag	
Perforant path	Adenosine	↑ Adenosine A1 receptor expression in the dentate gyrus	
	Galanin	↑ GalR1, GalR2 receptor expression in the dentate gyrus	
	Endocannabinoids	↑ CB1 receptor expression in the dentate gyrus	
Abbreviations: AS gamma-aminobuty subthalamic nucle	SM, anti-seizure medi yric acid; GalR, gala eus; 5HT, 5-hydroxytry	ication; CB, cannabinoid; DBS, deep brain stimulation nin receptor; GP, globus pallidus; SNr, substantia nig yptamine.	
		Conclusions	

- exploring effects within a specific region.
- broader neural networks.

. Sultana, B. et al. Incidence and Prevalence of Drug-Resistant Epilepsy: A Systematic Review and Meta-analysis. Neurology 96, 805–817 (2021). 2. Klinger, N. & Mittal, S. Deep brain stimulation for seizure control in drug-resistant epilepsy. Neurosurg. Focus 45, (2018). 3. Lozano, AM. et al. Deep brain stimulation: current challenges and future directions. Nat Rev Neurol. 15(3):148-60, (2019).

4. Alosaimi, F. et al. The role of neurotransmitter systems in mediating deep brain stimulation effects in Parkinson's disease. Front. Neurosci. 16, (2022). BioRender was used for the creation of figures.

UNIVERSITY OF TORONTO

endent

• Studies have primarily focused on the effects of DBS on inhibitory neurotransmitters, such as GABA, often

• Future research should consider exploring changes in both excitatory and inhibitory neurotransmitters across

References & Acknowledgements

